Integer Groups of Coinvariants Associated to Octagonal Tilings

نویسنده

  • JOHANNES KELLENDONK
چکیده

The integer groups of coinvariants associated to undecorated and decorated octagonal tilings are computed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer Group of Coinvariants

The local structure of a tiling is described in terms of a multiplicative structure on its pattern classes. The groupoid associated to the tiling is derived from this structure and its integer group of coinvariants is defined. This group furnishes part of the K0-group of the groupoid C ∗-algebra for tilings which reduce to decorations of Z Z . The group itself as well as the image of its state ...

متن کامل

Enumeration of Hybrid Domino-Lozenge Tilings II: Quasi-Octagonal Regions

We use the subgraph replacement method to prove a simple product formula for the tilings of an octagonal counterpart of Propp’s quasi-hexagons (Problem 16 in New Perspectives in Geometric Combinatorics, Cambridge University Press, 1999), called quasi-octagon.

متن کامل

Fixed-boundary octagonal random tilings: a combinatorial approach

Some combinatorial properties of fixed boundary rhombus random tilings with octagonal symmetry are studied. A geometrical analysis of their configuration space is given as well as a description in terms of discrete dynamical systems, thus generalizing previous results on the more restricted class of codimension-one tilings. In particular this method gives access to counting formulas, which are ...

متن کامل

Enumeration of octagonal random tilings by the Gessel-Viennot method

We propose the first algebraic determinantal formula to enumerate random rhombus tilings filling a centro-symmetric octagon of any size. This result uses the GesselViennot technique and generalizes to any octagon a former specialized formula by Elnitsky.

متن کامل

Cluster Interactions for Quasiperiodic Tilings

A cluster for the octagonal square-rhombus tiling is presented, which has the property that among all tilings completely covered by the cluster the perfectly quasiperiodic and eightfold symmetric ones have the highest cluster density. Since on these eightfold symmetric tilings there is considerable overlap of clusters, it seems likely that these tiling have the highest cluster density even amon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995